Добавить в закладки   •   Для замечаний

Справочник
химика

АБВГ
ДЕЖЗ
ИКЛМ
НОПР
СТУФ
ХЦЧШ
ЩЭЮЯ

Свойства
химических
элементов

Свойства
драгоценных
минералов

Великие
химики


 
 

Кислород

8O
 
Кислород
Oxygen
(He)2s22p4
Атомный номер8
Атомная масса15,999
Плотность, кг/м³1,429
Температура плавления, °С-218,8
Температура кипения, °С-183
Теплоемкость, кДж/(кг·°С)0,913
Электроотрицательность3,5
Ковалентный радиус, Å0,73
1-й ионизац. потенциал, эв13,62

Кислород

Историческая справка

Распространение в природе

Изотопы, атом и молекула Кислорода

Физические свойства

Химические свойства

Получение

Применение

Кислород (лат. Oxygenium), О, химический элемент VI группы периодической системы Менделеева; атомный номер 8, атомная масса 15,9994. При нормальных условиях Кислород газ без цвета, запаха и вкуса. Трудно назвать другой элемент, который играл бы на нашей планете такую важную роль, как Кислород.

Историческая справка. Процессы горения и дыхания издавна привлекали внимание ученых. Первые указания на то, что не весь воздух, а лишь "активная" его часть поддерживает горение, обнаружены в китайских рукописях 8 века. Много позже Леонардо да Винчи (1452-1519) рассматривал воздух как смесь двух газов, лишь один из которых расходуется при горении и дыхании. Окончательное открытие двух главных составных частей воздуха - азота и Кислорода, сделавшее эпоху в науке, произошло только в конце 18 века. Кислород получили почти одновременно К. Шееле (1769-70) путем прокаливания селитр (KNO3, NaNO3), двуокиси марганца МnО2 и других веществ и Дж. Пристли (1774) при нагревании сурика Рb3О4 и оксида ртути HgO. В 1772 году Д. Резерфорд открыл азот. В 1775 году А. Лавуазье, произведя количественный анализ воздуха, нашел, что он "состоит из двух (газов) различного и, так сказать, противоположного характера", то есть из Кислорода и азота. На основе широких экспериментальных исследований Лавуазье правильно объяснил горение и дыхание как процессы взаимодействия веществ с Кислородом. Поскольку Кислород входит в состав кислот, Лавуазье назвал его oxygene, то есть "образующий кислоты" (от греч. oxys - кислый и gennao - рождаю; отсюда и русское название "кислород").

Распространение Кислорода в природе. Кислород - самый распространенный химический элемент на Земле. Связанный Кислород составляет около 6/7 массы водной оболочки Земли - гидросферы (85,82% по массе), почти половину литосферы (47% по массе), и только в атмосфере, где Кислород находится в свободном состоянии, он занимает второе место (23,15% по массе) после азота.

Кислород стоит на первом месте и по числу образуемых им минералов (1364); среди минералов, содержащих Кислород, преобладают силикаты (полевые шпаты, слюды и другие), кварц, оксиды железа, карбонаты и сульфаты. В живых организмах в среднем около 70% Кислорода; он входит в состав большинства важнейших органических соединений (белков, жиров, углеводов и т. д.) и в состав неорганических соединений скелета. Исключительно велика роль свободного Кислород в биохимических и физиологических процессах, особенно в дыхании. За исключением некоторых микроорганизмов-анаэробов, все животные и растения получают необходимую для жизнедеятельности энергию за счет биологического окисления различных веществ с помощью Кислорода.

Вся масса свободного Кислорода Земли возникла и сохраняется благодаря жизнедеятельности зеленых растений суши и Мирового океана, выделяющих Кислород в процессе фотосинтеза. На земной поверхности, где протекает фотосинтез и господствует свободный Кислород, формируются резко окислительные условия. Напротив, в магме, а также глубоких горизонтах подземных вод, в илах морей и озер, в болотах, где свободный Кислород отсутствует, формируется восстановительная среда. Окислительно-восстановительные процессы с участием Кислорода определяют концентрацию многих элементов и образование месторождений полезных ископаемых - угля, нефти, серы, руд железа, меди и т. д.. Изменения в круговороте Кислорода вносит и хозяйственная деятельность человека. В некоторых промышленных странах при сгорании топлива расходуется Кислорода больше, чем его выделяют растения при фотосинтезе. Всего же на сжигание топлива в мире ежегодно потребляется около 9·109 т Кислорода.

Изотопы, атом и молекула Кислорода. Кислород имеет три устойчивых изотопа: 16О, 17О и 18О, среднее содержание которых составляет соответственно 99,759%, 0,037% и 0,204% от общего числа атомов Кислорода на Земле. Резкое преобладание в смеси изотопов наиболее легкого из них 16О связано с тем, что ядро атома 16О состоит из 8 протонов и 8 нейтронов. А такие ядра, как следует из теории атомного ядра, обладают особой устойчивостью.

В соответствии с положением Кислорода в периодической системе элементов Менделеева электроны атома Кислорода располагаются на двух оболочках: 2 - на внутренней и 6 - на внешней (конфигурация 1s22s22p4). Поскольку внешняя оболочка атома Кислорода не заполнена, а потенциал ионизации и сродство к электрону составляют соответственно 13,61 и 1,46 эв, атом Кислорода в химических соединениях обычно приобретает электроны и имеет отрицательный эффективный заряд. Напротив, крайне редки соединения, в которых электроны отрываются (точнее оттягиваются) от атома Кислород (таковы, например, F2O, F2О3). Раньше, исходя единственно из положения Кислорода в периодической системе, атому Кислорода в оксидах и в большинстве других соединений приписывали отрицательный заряд (-2). Однако, как показывают экспериментальные данные, ион О2- не существует ни в свободном состоянии, ни в соединениях, и отрицательный эффективный заряд атома Кислорода практически никогда существенно не превышает единицы.

В обычных условиях молекула Кислорода двухатомна (О2); в тихом электрическом разряде образуется также трехатомная молекула О3 - озон; при высоких давлениях обнаружены в небольших количествах молекулы О4. Электронное строение О2 представляет большой теоретический интерес. В основном состоянии молекула О2 имеет два неспаренных электрона; для нее неприменима "обычная" классическая структурная формула О=О с двумя двухэлектронными связями. Исчерпывающее объяснение этого факта дано в рамках теории молекулярных орбиталей. Энергия ионизации молекулы Кислорода (О2 - е → О2+) составляет 12,2 эв, а сродство к электрону (О2 + е → О2-) - 0,94 эв. Диссоциация молекулярного Кислорода на атомы при обычной температуре ничтожно мала, она становится заметной лишь при 1500°С; при 5000°С молекулы Кислорода почти полностью диссоциированы на атомы.

Физические свойства Кислорода. Кислород бесцветный газ, сгущающийся при -182,9°С и нормальном давлении в бледно-синюю жидкость, которая при -218,7°С затвердевает, образуя синие кристаллы. Плотность газообразного Кислорода (при 0°С и нормальном давлении) 1,42897 г/л. Критическая температура Кислорода довольно низка (Ткрит = -118,84°С), то есть ниже, чем у Cl2, СО2, SO2 и некоторых других газов; Ткрит = 4,97 Мн/м2 (49,71 ат). Теплопроводность (при 0°С) 23,86·10-3вт/(м·К). Молярная теплоемкость (при 0°С) в дж/(моль·К) Сp = 28,9, Сv = 20,5, Сpv = 1,403. Диэлектрическая проницаемость газообразного Кислорода 1,000547 (0°С), жидкого 1,491. Вязкость 189 мпуаз (0°С). Кислород мало растворим в воде: при 20°С и 1 ат в 1 м3 воды растворяется 0,031 м3, а при 0°С - 0,049 м3 Кислорода. Хорошими твердыми поглотителями Кислорода являются платиновая чернь и активный древесный уголь.

Химические свойства Кислорода. Кислород образует химические соединения со всеми элементами, кроме легких инертных газов. Будучи наиболее активным (после фтора) неметаллом, Кислород взаимодействует с большинством элементов непосредственно; исключение составляют тяжелые инертные газы, галогены, золото и платина; их соединения с Кислородом получают косвенным путем. Почти все реакции Кислорода с других веществами - реакции окисления экзотермичны, то есть сопровождаются выделением энергии. С водородом при обычных температурах Кислород реагирует крайне медленно, выше 550°С эта реакция идет со взрывом:

2 + О2 = 2Н2О.

С серой, углеродом, азотом, фосфором Кислород взаимодействует при обычных условиях очень медленно. При повышении температуры скорость реакции возрастает и при некоторой, характерной для каждого элемента температуре воспламенения начинается горение. Реакция азота с Кислородом благодаря особой прочности молекулы N2 эндотермична и становится заметной лишь выше 1200°С или в электрическом разряде: N2 + О2 = 2NO. Кислород активно окисляет почти все металлы, особенно легко - щелочные и щелочноземельные. Активность взаимодействия металла с Кислородом зависит от многих факторов - состояния поверхности металла, степени измельчения, присутствия примесей.

В процессе взаимодействия вещества с Кислородом исключительно важна роль воды. Например, даже такой активный металл, как калий, с совершенно лишенным влаги Кислородом не реагирует, но воспламеняется в Кислороде при обычной температуре в присутствии даже ничтожных количеств паров воды. Подсчитано, что в результате коррозии ежегодно теряется до 10% всего производимого металла.

Оксиды некоторых металлов, присоединяя Кислород, образуют перекисные соединения, содержащие 2 или более связанных между собой атомов Кислорода. Так, пероксиды Na2O2 и ВаО2 включают пероксидный ион О22-, надпероксиды NaO2 и КО2 - ион О2-, а озониды NaO3, КО3, RbO3 и CsO3 - ион О3-. Кислород экзотермически взаимодействует со многими сложными веществами. Так, аммиак горит в Кислороде в отсутствии катализаторов, реакция идет по уравнению: 4NH3 + ЗО2 = 2N2 + 6H2O. Окисление аммиака кислородом в присутствии катализатора дает NO (этот процесс используют при получении азотной кислоты). Особое значение имеет горение углеводородов (природного газа, бензина, керосина) - важнейший источник тепла в быту и промышленности, например СН4 + 2О2 = CO2 + 2H2O. Взаимодействие углеводородов с Кислородом лежит в основе многих важнейших производственных процессов - такова, например, так называемая конверсия метана, проводимая для получения водорода: 2СН4 + О2 + 2Н2О = 2СО2 + 6Н2. Многие органические соединения (углеводороды с двойной или тройной связью, альдегиды, фенолы, а также скипидар, высыхающие масла и другие) энергично присоединяют Кислород. Окисление Кислородом питательных веществ в клетках служит источником энергии живых организмов.

Получение Кислорода. Существует 3 основных способа получения Кислорода: химический, электролизный (электролиз воды) и физический (разделение воздуха).

Химический способ изобретен ранее других. Кислород можно получать, например, из бертолетовой соли КClОз, которая при нагревании разлагается, выделяя О2 в количестве 0,27 м3 на 1 кг соли. Оксид бария ВаО при нагревании до 540°С сначала поглощает Кислород из воздуха, образуя пероксид ВаО2, а при последующем нагревании до 870°С ВаО2 разлагается, выделяя чистый Кислород. Его можно получать также из KMnO4, Ca2PbO4, К2Сг2О7 и других веществ при нагревании и добавлении катализаторов. Химический способ получения Кислорода малопроизводителен и дорог, промышленного значения не имеет и используется лишь в лабораторной практике.

Электролизный способ состоит в пропускании постоянного электрического тока через воду, в которую для повышения ее электропроводности добавлен раствор едкого натра NaOH. При этом вода разлагается на Кислород и водород. Кислород собирается около положительного электрода электролизера, а водород - около отрицательного. Этим способом Кислород добывают как побочный продукт при производстве водорода. Для получения 2 м3 водорода и 1 м3Кислорода затрачивается 12-15 кВт·ч электроэнергии.

Разделение воздуха является основным способом получения Кислорода в современной технике. Осуществить разделение воздуха в нормальном газообразном состоянии очень трудно, поэтому воздух прежде сжижают, а уже затем разделяют на составные части. Такой способ получения Кислорода называется разделением воздуха методом глубокого охлаждения. Сначала воздух сжимается компрессором, затем, после прохождения теплообменников, расширяется в машине-детандере или дроссельном вентиле, в результате чего охлаждается до температуры 93 К (-180°С) и превращается в жидкий воздух. Дальнейшее разделение жидкого воздуха, состоящего в основном из жидкого азота и жидкого Кислород, основано на различии температуры кипения его компонентов [Ткип О2 90,18 К (-182,9°С), tкип N2 77,36 К (-195,8°С)]. При постепенном испарении жидкого воздуха сначала выпаривается преимущественно азот, а остающаяся жидкость все более обогащается Кислородом. Повторяя подобный процесс многократно на ректификационных тарелках воздухоразделительных колонн, получают жидкий Кислород нужной чистоты (концентрации). В СССР выпускают мелкие (на несколько литров) и самые крупные в мире кислородные воздухоразделительные установки (на 35000 м3/ч Кислорода). Эти установки производят технологический Кислород с концентрацией 95-98,5%, технический - с концентрацией 99,2-99,9% и более чистый, медицинский Кислород, выдавая продукцию в жидком и газообразном виде. Расход электрической энергии составляет от 0,41 до 1,6 квт·ч/м3.

Кислород можно получать также при разделении воздуха по методу избирательного проницания (диффузии) через перегородки-мембраны. Воздух под повышенным давлением пропускается через фторопластовые, стеклянные или пластиковые перегородки, структурная решетка которых способна пропускать молекулы одних компонентов и задерживать другие.

Газообразный Кислород хранят и транспортируют в стальных баллонах и ресиверах при давлении 15 и 42 Мн/м2 (соответственно 150 и 420 бар, или 150 и 420 ат), жидкий Кислород в металлических сосудах Дьюара или в специальных цистернах-танках. Для транспортировки жидкого и газообразного Кислорода используют также специальные трубопроводы. Кислородные баллоны окрашены в голубой цвет и имеют черную надпись "кислород".

Применение Кислорода. Технический Кислород используют в процессах газопламенной обработки металлов, в сварке, кислородной резке, поверхностной закалке, металлизации и других, а также в авиации, на подводных судах и прочее. Технологический Кислород применяют в химической промышленности при получении искусственного жидкого топлива, смазочных масел, азотной и серной кислот, метанола, аммиака и аммиачных удобрений, пероксидов металлов и других химических продуктов. Жидкий Кислород применяют при взрывных работах, в реактивных двигателях и в лабораторной практике в качестве хладагента.

Заключенный в баллоны чистый Кислород используют для дыхания на больших высотах, при космических полетах, при подводном плавании и других В медицине Кислород дают для вдыхания тяжело больным, применяют для приготовления кислородных, водяных и воздушных (в кислородных палатках) ванн, для внутримышечного введения и т. п.

Кислород в металлургии широко применяется для интенсификации ряда пирометаллургических процессов. Полная или частичная замена поступающего в металлургические агрегаты воздуха кислородом изменила химизм процессов, их теплотехнические параметры и технико-экономические показатели. Кислородное дутье позволило сократить потери тепла с уходящими газами, значительная часть которых при воздушном дутье составлял азот. Не принимая существенного участия в химических процессах, азот замедлял течение реакций, уменьшая концентрацию активных реагентов окислительно-восстановительной среды. При продувке Кислородом снижается расход топлива, улучшается качество металла, в металлургических агрегатах возможно получение новых видов продукции (например, шлаков и газов необычного для данного процесса состава, находящих специальное техническое применение) и др.

Первые опыты по применению дутья, обогащенного Кислородом, в доменном производстве для выплавки передельного чугуна и ферромарганца были проведены одновременно в СССР и Германии в 1932-33. Повышенное содержание Кислорода в доменном дутье сопровождается большим сокращением расхода последнего, при этом увеличивается содержание в доменном газе оксида углерода и повышается его теплота сгорания. Обогащение дутья Кислородом позволяет повысить производительность доменной печи, а в сочетании с газообразным и жидким топливом, подаваемым в горн, приводит к снижению расхода кокса. В этом случае на каждый дополнительный процент Кислорода в дутье производительность увеличивается примерно на 2,5%, а расход кокса снижается на 1%.

Кислород в мартеновском производстве в СССР сначала использовали для интенсификации сжигания топлива (в промышленном масштабе Кислород для этой цели впервые применили на заводах "Серп и молот" и "Красное Сормово" в 1932-33). В 1933 начали вдувать Кислород непосредственно в жидкую ванну с целью окисления примесей в период доводки. С повышением интенсивности продувки расплава на 1 м3/т за 1 ч производительность печи возрастает на 5-10%, расход топлива сокращается на 4-5%. Однако при продувке увеличиваются потери металла. При расходе Кислорода до 10 м3/т за 1 ч выход стали снижается незначительно (до 1%). В мартеновском производстве Кислород находит все большее распространение. Так, если в 1965 году с применением Кислорода в мартеновских печах было выплавлено 52,1% стали, то в 1970 уже 71%.

Опыты по применению Кислорода в электросталеплавильных печах в СССР были начаты в 1946 на заводе "Электросталь". Внедрение кислородного дутья позволило увеличить производительность печей на 25-30%, снизить удельный расход электроэнергии на 20-30%, повысить качество стали, сократить расход электродов и некоторых дефицитных легирующих добавок. Особенно эффективной оказалась подача Кислорода в электропечи при производстве нержавеющих сталей с низким содержанием углерода, выплавка которых сильно затрудняется вследствие науглероживающего действия электродов. Доля электростали, получаемой в СССР с использованием Кислорода, непрерывно росла и в 1970 составила 74,6% от общего производства стали.

В ваграночной плавке обогащенное Кислородом дутье применяется главным образом для высокого перегрева чугуна, что необходимо при производстве высококачественного, в частности высоколегированного, литья (кремнистого, хромистого и т. д.). В зависимости от степени обогащения Кислородом ваграночного дутья на 30-50% снижается расход топлива, на 30-40% уменьшается содержание серы в металле, на 80-100% увеличивается производительность вагранки и существенно (до 1500°С) повышается температура выпускаемого из нее чугуна.

Кислород в цветной металлургии получил распространение несколько позже, чем в черной. Обогащенное Кислородом дутье используется при конвертировании штейнов, в процессах шлаковозгонки, вельцевания, агломерации и при отражательной плавке медных концентратов. В свинцовом, медном и никелевом производстве кислородное дутье интенсифицировало процессы шахтной плавки, позволило снизить расход кокса на 10-20%, увеличить проплав на 15-20% и сократить количество флюсов в отдельных случаях в 2-3 раза. Обогащение Кислородом воздушного дутья до 30% при обжиге цинковых сульфидных концентратов увеличило производительность процесса на 70% и уменьшило объем отходящих газов на 30%.






 
 
 
 




(c) 2022 - Chem100.ru :: Справочник химика